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ABSTRACT
Muscle fatigue detection and tracking has gained significant
attention as the sports science and rehabilitation technologies
developed. It is known that muscle fatigue can be evaluated
through surface Electromyography (sEMG) sensors, which are
portable, non-invasive and applicable for real-time systems.
There are plenty of fatigue tracking algorithms, many of which
uses frequency, time and time-frequency behaviors of sEMG
signals. An example to most commonly used sEMG-based
fatigue detection methods can be mean frequency (MNF), me-
dian frequency (MDF), zero-crossing rate (ZCR) and continu-
ous wavelet transform (CWT). However, all of these muscle
fatigue calculation methods are adversely affected by the dy-
namically changing sEMG contraction amplitude, since EMG
spectrum also demonstrates a shift with the changing signal
RMS; powerful contractions lead a shift to high frequency
bounds and the opposite happens for the weak. To overcome
that, we propose an adaptive algorithm, which learns the effect
of contraction power on sEMG power spectral density (PSD)
and subtracts that amount of frequency shift from the PSD.
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INTRODUCTION
Muscle fatigue is the inability of the muscle to generate the de-
sired contraction and force, as a result of repetitive and power-
requiring tasks undergone [9]. The detection and tracking of
muscle fatigue has gained importance in the sports science and
rehabilitation applications, since it can lead to prevent muscle
injury, over-training and re-injury during rehabilitation; ana-
lyze muscle strength and endurance development; and monitor
gradual athlete performance [5, 12]. Captured sEMG signals
provide information about muscle fatigue. An sEMG signal
can be evaluated in both time and frequency domains in order
to investigate muscle fatigue. Physiologically, a simple mus-
cle contraction is actualized by the impulses (i.e., firings) sent
from brain to the motor unit of the muscle. The amplitude of
the impulses is fixed and does not affect the magnitude of con-
tractions. The contractions vary through the rate of impulses,
i.e. the firing rate [2]. When a muscle begins undergoing
fatigue, substances such as H+, Ca+2, Na+, and P−3 accumu-
late and lessen the conduction velocity in muscle fibers and
motor units [8]. The reduced conduction velocity results in
a direct decrease in the impulse rate, prompting the muscle’s
contraction to fall below the desired amount. This constitutes
the definitions of fatigue. Nevertheless, the decrease of the
firing rate does not only reduce the contraction amount, which
is mainly observable through the change in the RMS value;
the decrease of the firing rate also shifts the spectral density to
smaller frequency values.

Frequency, time, and frequency-time domain analysis can be
conducted to trace muscle fatigue. In frequency-domain anal-
ysis, Mean Frequency (MNF) and Median Frequency (MDF)
dominate as the current state of the art [7, 11]. As for time-
domain analysis, Zero Crossing Rate (ZCR) is amongst the rel-
evant analysis methods nowadays [3]. Lastly, frequency-time
domain analysis incorporates both time-domain (i.e. RMS)
and frequency-domain (i.e. MNF/MDF) features as its parame-
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ters, Continuous Wavelet Transform (CWT) being an example
of such analysis methods [13, 15]. For EMG fatigue tracing,
the choice of method depends on the analysis approach. For
instance, MNF/MDF are more preferable for online short-term
fatigue tracking, CWT for long-term big-batch analysis [16].
Nevertheless, EMG amplitude fluctuations affect the robust-
ness of any method chosen for fatigue analysis [10]. To be
specific, contraction amplitude fluctuations have an adverse
effect on the fatigue analysis of dynamic exercises, where
irregular and varying contractions magnitudes are actualized.
For example, when a small-amplitude contraction is followed
by a high-amplitude contraction, the power spectrum would
invariably shift to lower frequencies. However, as discussed
earlier, this may result in potential muscle fatigue misdiagno-
sis, prompting the need for a tool that dismisses the effects of
contraction amplitudes on fatigue analysis.

Thus, we have developed an adaptive algorithm that suppresses
the effects of contraction amplitude (i.e., Contraction Effect
Suppression, CES) on fatigue analysis. It is worth mentioning
that we are not proposing a method, but a correctional tool
that can aid preexisting methods (cf. MNF/MDF, ZCR, CWT)
in rejecting the effects of contraction amplitude fluctuations.
Since for a powerful contraction the neural system is required
to send impulses to the motor units of the muscles with a firing
rate that is substantially higher than that of a weak contraction.
In particular, it can be said that the firing rate, besides the mus-
cle fatigue, is also related to the amount of contraction power,
resulting a frequency shift to higher bounds with powerful
contractions and the opposite with weak contractions. The
proposed tool, CES, relies on the linear relation between RMS
and spectral shift, which are universal features of EMG signals,
and is therefore compatible with any choice of fatigue analysis
method. The presented method, simply learns the amount
of spectral shift that the sEMG RMS adds to the system and
subtracts it from the PSD as an offset.

PROBLEM SETUP
In this paper, we are dealing with the problem of fatigue
estimation from sEMG signals during varied physical activi-
ties that involve gradually changing signal amplitude. Since
changes in EMG signal amplitude affect the Power Spectral
Density (PSD), fatigue tracking through spectral analysis such
as Median Frequency (MDF) and Mean Frequency (MNF) are
singly inefficient at detecting fatigue during dynamic activities.
In order to reduce the effect of signal amplitude (i.e. Root
Mean Square), we have proposed a mathematical model of an
observed EMG frame’s spectral behavior. Assume that we use
a generic metric κ to track fatigue level. κ can be chosen as
any analysis metrics (i.e. MNF, MDF, or ZCR ) for tracking
the localized fatigue level. Then, the proposed mathemati-
cal model assumes a linear relation between the contraction
amplitude and the time-frequency analysis, as

κn = θn ∗ rn +
1
fn
, (1)

where κn is the fatigue tracking metric, rn is the Root Mean
Square (RMS) value and fn is the clean fatigue level of the
nth frame. If the θn value is estimated, then the clean fatigue
value fn can be extracted using (1). However, the fatigue level

fn is not negligible since it also changes with gradual muscle
activity and directly affects the κ value. Thus, in order to
neglect the effect of changes in fn, we consider contraction
frames realized with very small time differences. Since the
change in fn converges to zero as the time difference between
two contraction windows is minimized, we ignore the impact
of fatigue on spectral analysis and estimate the weight, θ̂ , as

θ̂ = (

N

∑
i, j

κi−κ j)/(

N

∑
i, j

ri− r j),∀i , j, (2)

where i is the number of the last (for batch analysis) or current
( for online analysis) frame and j is the number of all the other
frames except the i. Nonetheless, the computation of θ̂ in
(2) can be misleading since the RMS and κ differences are
calculated with uniform weighting, which is incorrect due to
the time-dependent change in the fatigue level. Thus, both
differences must be modified by multiplying with a weight
that is inversely proportional to the time difference between
the contraction frames. We modified (2) using negative expo-
nential weighting of the time differences between the frames
as follows:

θ̂ = (

N

∑
i, j

e−γ(ti−t j)(κi−κ j))

/
(

N

∑
i, j

e−γ(ti−t j)(ri− r j)) =
K
R
,

(3)

where γ is the learning rate that is selected to be, 1/
√

ti, de-
creasing over time. To track our fatigue observation κ and
the RMS of each contraction, we have created the EMG data
frames using a sliding window. Let N be the frame length and
L be the frame overlap length (such that two adjacent frames
have a total of L samples in common). We define the column
vector yt as the frame at time t, given by:

yt = [y[m+1],y[m+2], . . . ,y[m+N]]T , (4)

where m = (t− 1)(N−L). The yt is defined as the superpo-
sition of clean EMG signal, xt and Additive White Gaussian
Noise (AWGN), vt as the frames at time t. We also define the
fourier transforms (DFT) of these column vectors as Y t ,X t ,V t
respectively. Hence,

yt = xt + vt , (5)
Y t = X t +V t . (6)

By using Y t , we are going to calculate the κt and rt in (1) at
time t. In order to make such calculations, we use the frames
that involve muscle activation potentials, namely sEMG signal.
However, there is no guarantee that the muscle signals will be
present at each observation frame (there may be frames where
the muscle is not contracted). Hence, if there is no contraction
at time t, then the observation frame will simply be given by
Y t =V t . Therefore, we can write the model as:

Y t = αtSt +V t , (7)

where St is the muscle contraction signal, X t =αtSt , and αt = 1
if there is a contraction and 0 otherwise. For these reasons, we
first detect the EMG data frames where the muscle activation

81



potential is present and use their information to estimate the
fatigue level of the muscle.

ACTIVE FRAME CLASSIFICATION
To correctly detect the EMG data frames that contain mus-
cle contractions, we need to use an unsupervised learning
procedure since, in most prominent EMG applications, the
corresponding time of the muscle contractions is not necessar-
ily provided [4]. To decide whether an incoming data frame
is active or not (i.e. contains contractions or not), we use the
energy of that particular frame. At each time t, Pt denotes the
energy of the received frame yt , which is given by: Pt = yT

t yt ,
where yT

t is the transpose of yt . To decide whether an incom-
ing frame yt is active or not, we compare a monotonically
increasing transformation Φ(Pt) with a threshold τt :

αt =

{
1, Φ(Pt)≥ τt (active),
0, Φ(Pt)< τt (inactive).

(8)

For the algorithm to function adequately, a suitable selection
of the threshold τt is needed. However, without the knowledge
of the energy levels for the active and inactive frames, this
threshold cannot be reliably selected. Therefore, instead of
selecting a fixed threshold, we use a dynamic thresholding
scheme that learns with Online Gradient Descent (OGD) [6].
In general, OGD procedure updates the threshold as follows:

τt+1 = τt −µt
∂ lt(τt)

∂τt
, (9)

where lt(·) is the loss function at time t. For the detection
of maximal contractions, we need a threshold value closer to
the maximum received frame energy. Therefore, we use the
positive exponential transform on the energy values Pt , given
by Φ(Pt) = exp(Pt). The loss function consequently becomes:

lt(τt) = (τt − exp(Pt))
2, (10)

which modifies the MMSE solution to:

τ
∗ = argmin

τ

T

∑
t=1

(τ− exp(Pt))
2 =

1
T

T

∑
t=1

exp(Pt). (11)

We would like to point out that the original MMSE solution
is equivalent to the logarithm of the geometric mean of the
exponentiated energy values exp(Pt). Hence, this τ∗ is a satis-
factorily higher threshold value due to the AM-GM inequality.
Using the loss function in (10) and the OGD method in (9)
with the step size µt = 1/2t, our threshold update becomes:

τt+1 = τt −
τt − exp(Pt)

t
, (12)

and our active frame detection is given by:

αt =

{
1, exp(Pt)≥ τt (active),
0, exp(Pt)< τt (inactive).

(13)

We point out that this recursive approach is similar to the
softmax operation. If, instead of exp(Pt), we use exp(KPt)
and let K go to ∞ (i.e. instead of a unit gain we use infinite
gain), the recursive operation will converge to the maximum
value of the energies. Thus, after detecting the frames that

are active (i.e. contractions), we begin estimating the clean
fatigue level of localized muscles.

CONTRACTION EFFECT SUPPRESSION (CES)
In this Section, we propose the method of extracting the clean
fatigue value fn in (1). This can be done by solely estimating
and updating the weight of θ for each frame, since RMS is the
amplitude indicator and κ is any of the time-frequency domain
fatigue tracking methods. The most common and frequently
used κ metrics in relevant literature are MNF, MDF, and ZCR,
which are sequentially described in the following subsection.

Preliminaries
Prior to the estimation of θ , it is first required to know the
certain time-frequency domain fatigue tracking calculation
methods (i.e. κ). MNF, MDF, and ZCR are a few examples
of the methods frequently used to detect the spectral shift of
sEMG signals, with which fatigue behavior is obtained. Since
we have defined the mathematical model to extract the clean
fatigue level in (1), RMS is also required besides the κ metrics
for proper estimation of θ . Let Yn[ f ] be the Discrete Fourier
Transform (DFT) of the received contraction frame yn. In
order to obtain sharper results, we used the Spectral Power
In[ f ] which is calculated as follows:

In[ f ] = (Yn[ f ]◦Yn[ f ])︸             ︷︷             ︸
Hadamard product

, (14)

where In, yn and Yn are column vectors.

Mean Frequency (MNF)
MNF, mn, of the nth contraction frame is calculated as

mn =
InF
InIT

n
, (15)

where IT
n corresponds to the transpose of the PSD and F is a

column vector involving the frequency bins starting from 1 to
half of the sampling frequency (Fs/2).

Median Frequency (MDF)
In order to estimate the MDF of the nth frame, denoted mdn,
the cumulative sum Cumn of the In[ f ] is taken. Then, the half-
sum of the elements of the Spectral Density In[ f ] is calculated
as SumIn. After calculating SumIn and Cumn, the first index
of Cumn that is greater in value than SumIn corresponds to the
desired mdn.

Zero Crossing Rate (ZCR)
The ZCR, denoted zcrn, of the nth frame is determined by
the amount of sign changes throughout the signal, which is
formulated as:

zcrn =
1

N−1

N−1

∑
i=1

1(yn[i]yn[i−1]< 0) , (16)

where N is the frame length, 1(.) is the indicator function that
returns 1 if the statement inside is true, or 0 otherwise.

Root Mean Square (RMS)
RMS of the nth contraction frame rn is calculated as

rn =

√
ynyT

n

N
, (17)
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where N is the frame length and yT
n is the transpose of the

contraction frame yn.

Estimation of θ

It is known that the muscle contraction rate demonstrates a
certain shift in spectral behavior of the sEMG signal, even
when there is no change in the fatigue level of the subject.
Regardless of the metric used to detect fatigue, the effect of
contraction amplitude on the spectral behavior of the sEMG
signal can be rejected through the estimation of θ in (1). In
(3) of Section 2, we estimate the θ value by dividing the
exponentially weighted (and inversely proportional with the
time difference of the frames) sum differences of the fatigue
metrics (i.e. κi−κ j, ∀ i , j) by RMS values (i.e. ri− r j, ∀
i , j). The stated estimation of θ , θ̂ , is shown as θ̂ = Kn/Rn,
where Kn and Rn are the accumulated differences of κ and r.
The calculations of Kn and Rn are shown in (18) and (19).

Kn = Kn−1 +
n−1

∑
i=1

e−γ(n−i)(κn−κi) (18)

Rn = Rn−1 +
n−1

∑
i=1

e−γ(n−i)(rn− ri) (19)

However, (18) and (19) are not feasible when there is a large
amount of contraction data. Since the number of iterations
is directly related to the total amount of contractions, the
calculations of Kn and Rn will have increasing computational
costs. However, Kn and Rn are efficiently calculable as

Kn = Kn−1 + e−γn
(

κn

n−1

∑
i=1

eγi

︸   ︷︷   ︸
ζn−1

−
n−1

∑
i=1

eγi
κi︸     ︷︷     ︸

βn−1

)
, (20)

Rn = Rn−1 + e−γn
(

rn

n−1

∑
i=1

eγi

︸   ︷︷   ︸
ζn−1

−
n−1

∑
i=1

eγiri︸     ︷︷     ︸
δn−1

)
, (21)

where ζ , β and δ are intermediate variables. Thus,

Kn = Kn−1 + e−γn(κnζn−1−βn−1), (22)

Rn = Rn−1 + e−γn(rnζn−1−δn−1). (23)

We update ζn, βn and δn as

ζn = ζn−1 + e−γn , (24)

βn = βn−1 +κne−γn , (25)

δn = δn−1 + rne−γn . (26)

After the calculation of K and R values with a single iteration
for each new contraction frame, θ̂ can be estimated as Kn/Rn.
Through the use of θ̂ , the effect of amplitude on the spectral
analysis is rejected, which is explained next.

Clean Fatigue Extraction
The clean fatigue level fn of the nth frame is calculated as the
subtraction of θnrn from the generic fatigue tracking metric
κn. As stated, κ is a generic fatigue tracking tool and can

Subject No Age Gender Height (cm) Weight (kg)

S1 20 Female 167 61

S2 24 Female 169 67

S3 26 Female 165 58

S4 24 Male 173 72

S5 25 Male 178 68

S6 28 Male 168 70

S7 24 Male 167 72

S8 25 Male 189 66

S9 24 Male 175 78

S10 24 Female 181 60

Table 1. Information about gender, age, height and weight of
the subjects

be selected from the methods described in Section 4.1. The
extraction of the clean fatigue metric is realized as

fn =
1

κn− θ̂nrn
. (27)

EXPERIMENTS
In this section, we validate the performance of our method
through several experiments. In the following subsection (Sec-
tion 5.1), we detail the experimental setup (i.e. the number of
subjects, the specifications of the sEMG sensor, the type of the
physical activity and the sensor placement locations of data
acquisition). Subsequently, in Section 5.2, the achievement
of our proposed CES algorithm is validated with the use of
various κ selections. As the κ , MDF,MNF and ZCR is chosen.
Also, the window size is determined to be 128 with an overlap
of 64. Finally, in Section 5.4 and 5.3, the extracted fatigue
values with the use of CES are compared with the lactate
and isokinetic dynamometer results for aerobic and anaerobic
activities respectively.

Experimental Setup
In our experiments, sEMG data is gathered from 10 healthy
subjects with various physical properties (i.e. age, gender,
height (cm) and weight (kg)), with the details in Table 1.
The sensor used for EMG data acquisition is Biometrics
sx230− 1000, which is a dry active surface electromyogra-
phy sensor with a pass band of 20− 500 Hz and a gain of
1000 [1]. We have considered two different scenarios for the
experimental data acquisition, which involved anaerobic and
aerobic exercises. For the first scenario subjects performed an
anaerobic exercise involving several sets consecutive biceps
curls. As for an aerobic exercise, subjects made sets running
and walking. Throughout the experiments, the sEMG sensor
was placed on the most prominent bulge of the Gastrocnemius
Medialis muscle for the aerobic, and the line between the Me-
dial Acromion and the Cubital Fossa, at 1/3 of the distance
starting from the Cubital Fossa, for the anaerobic exercise [14].
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Figure 1. (a) The plots of averaged raw (top) and CES-applied (bottom) versions of MNF, MDF and ZCR values for the anaerobic
exercises (b) The plots of averaged raw (top) and CES-applied (bottom) versions of MNF, MDF and ZCR values for the aerobic
exercises

For the anaerobic exercise, subjects sat on an isokinetic dy-
namometer and made 7 sets of biceps curl exercise with 30
seconds of rests between each set. A set involved 10 reps of
consecutive biceps curls with one’s maximum possible effort.
After the last set, each subject rested for 10 minutes, where
subjects were asked to perform random contractions in order to
monitor the recovery phase of their muscles during relaxation.
In aerobic exercises subjects performed 4 sets of running (each
3 minutes) at speeds of 7, 8 ,9 km/h, respectively, and then
3 sets of walking (each 3 minutes) with a constant speed of
3 km/h. After each set, the subjects relaxed and rested for a
minute. After the last rest, the subjects performed random
calf contractions. However, EMG data alone is not sufficient
for the objective evaluation of our algorithm. Therefore, we
measured the blood lactate level using a lactate analyzer called
LactateScout+ at specific time intervals. The lactate level is
measured from a blood sample gathered from the earlobe. For

anaerobic exercises, we used the average peak torque values
gathered from the isokinetic dynamometer.

Comparisons of κ Metrics With CES
To see the advantages of CES algorithm, fatigue tracking met-
rics of MDF, MNF and ZCR (used as a κ metric) are evaluated
first alone and then with the use of CES for both aerobic
and anaerobic exercises. The results are shown in the follow-
ing subsections. Since 10 different subjects were involved
in the experiments, the results are averaged. In the first part,
subjects showed high effort involving anaerobic muscle activ-
ity, biceps curls, until the 7th minute (i.e., 500th frame), and
then rested afterwards. After the intense anaerobic practice,
namely 7th minute, subjects continued giving physiological
information through various muscle contractions, in order for
us to track their recovery rate, since both the isokinetic dy-
namometer and sEMG analysis requires muscle activation for
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Figure 2. (a) The polynomially-fitted plots of CES-applied and raw versions of MNF (top), MDF (center) and ZCR (bottom)
values for the anaerobic exercise. (b) The polynomially-fitted plots of CES-applied and raw versions of MNF (top), MDF (center)
and ZCR (bottom) values for the aerobic exercises

further evaluation. The average and smoothed plots of raw and
CES-applied κ metrics are demonstrated in Figure 2a and 1a.
CES-applied results only demonstrate a slightly better classifi-
cation between fatigued and non-fatigued stages. The reason
of such small improvement of CES algorithm in this exercise
is due to the little difference between contraction percentages,
where each muscle activation showed approximately 2 Vp−p
amplitude. In the second part of the experiments, EMG data
involving aerobic exercises of several runs and walks, was
analyzed. The average of selected κ metrics are visualized in
the top plots of Figure 1b, where it can be seen that the mag-
nitude of the amplitude affects the κ metric results and also
the fatigue analysis. On the other hand, when CES algorithm
is applied the effect of amplitude change is suppressed and
thus a cleaner fatigue result is obtained. In order to obtain a
smoother visualization, we have polynomially fitted the aver-
age calculations of resulting values in Figure 1b, as shown in
Figure 2b. The smoothed (i.e. polynomially fitted) versions
of the results demonstrate how the amplitude change affects
the MNF, MDF and ZCR calculations. In this exercise, the
average EMG power increases until the 15th minute (2000th

contraction frame), since subjects gradually increase the run-
ning speed, and then drop to a smaller value for the rest of
the activity due to the relaxation process, where the speed
is constant and low. If Figure 2b and 1b are observed, raw
versions of κ increase until the 2000th contraction frame and
then start to decrease afterwards. However, the results should
have been the opposite, since the subjects make more effort
(increasing fatigue) during the first 2000 frames and relax (de-
creasing fatigue) afterwards. The reason for this is the growing
EMG RMS. That is to say, the EMG RMS increases with the
increasing effort (i.e., higher speeds of running) and this shifts
the spectrum to higher boundaries, while fatiguing situations
tend to shift the frequency to lower bounds. Thus, it is uneasy
to dynamically track fatigue states with the raw applications of
κ metrics. On the other hand, CES algorithm properly rejects
the effect of EMG RMS. In the bottom plots of the Figure
2b and 1b, it is seen that the resulting values are compatible
with the exercise and for each κ metric. Moreover, all the
CES results ended up having the same waveform, whilst being
different in their raw versions.
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Figure 3. (a) The plots of average peak torque (top), CES-applied fatigue estimation (center), raw fatigue estimation (bottom) for
the anaerobic exercises (b) The plots of lactate in blood (top), CES-applied fatigue estimation (center), raw fatigue estimation
(bottom) for the aerobic exercises

Comparisons of Anaerobic Exercise Results with the
Isokinetic Dynamometer Results
In this section, the isokinetic dynamometer results are used as
an objective observation, besides sEMG-based analysis, for
tracking biceps muscle fatigue level in order to properly com-
pare CES’s performance gains. The isokinetic dynamometer
returned us the values of average peak torque, which decreases
during muscle exhaustion and increases during muscle recov-
ery. As predicted, in the first 500 contraction frames, the mus-
cles get tired and thus the average peak torque value shows a
drop from 42 N-M to 24.6 N-M. Afterwards, during the recov-
ery stage, the average peak torque increases from 24.6 N-M
to 35.4 N-M. The fatigue estimation through the sEMG-based
analysis visualizes similar results with true exhaustion and
recovery stage estimations. However, CES-applied κ metrics
outperforms its raw versions in creating better classification
between fatigue and non-fatigue stages, which shows a higher
similarity to isokinetic dynamometer results.

Comparisons of Aerobic Exercise Results with the Lac-
tate Test Results
In this part, we compare the performance of our proposed
method via an objective reference experiment, which is lactate
test. Even though the fatigue value is predicted by simply
likening it to the rate of effort extracted, it is still required
to physiologically demonstrate the actual fatigue behavior.
Lactate level in blood is an indicator, which is highly used
to track human fatigue in both academic and medical fields.
Thus, during the experiments we have also observed the lactate
in blood and compare the average results with one of our κ

metrics, MNF, alone and with the use of CES algorithm. In

the Figure 3b, the top plot shows the lactate in blood, which
is continued by fatigue extracted with MNF (the bottom plot)
and MNF with our proposed CES algorithm (the center plot).
From the plots it can be clearly seen that our method extracts
the fatigue, which highly resembles the lactate plot. All the
changes in the lactate plot behavior are consistent with the
results of MNF with CES. However, the fatigue plot that is
acquired from the raw version of MNF, is not accurate and
unable to detect the dynamic changes in fatigue. It can only
evaluate the overall physiological state, when the values are
linearly fitted (the green dotted plot). The reason is, as stated
in Section 5.2, due to the effect of contraction amplitude on the
spectral waveform. When the EMG signal amplitude increases
because of the increase in exerted muscle force, it shifts the
cumulated frequency of the acquired signal into higher bounds,
thus creating a noise in fatigue analysis.

CONCLUSION
In this paper, we proposed a successful implementation of an
algorithm to detect and surpass the effect of EMG signal power
on its spectral analysis. Thus, the presented tool improved the
performance of the EMG-based fatigue tracking methods of
the state of the art. To begin with, we first classified the active
and inactive EMG windows through an online adaptive thresh-
olding method. After successfully differentiating the active
EMG windows, we had them through varied fatigue tracking
metrics with and without CES for both aerobic and anaerobic
exercises. We compared the results through objective refer-
ence experiments, which are lactate (for aerobic activity) and
isokinetic dynamometer (for anaerobic activity) tests. Results
have shown us that the use of CES outperformed the raw use
of fatigue tracking metrics.
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